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ABSTRACT

The Aero-Astrodynamics Research Review No. 2 (NASA T™ X-53295) con-
tains a succinct account of Newtonian aerodynamics for general analytical
surfaces, Much of the detail passed over there when dealing with appli-
cations, together with a more thorough exposition of the general approach,
is given in the present report which, it is hoped, will be useful to those
who wish to actually work with Newtonian's method. It ought to serve well
in the high-Mach number, low-density phase of re-entry flight. The
lemniscatic body chosen in the Research Review paper as an example for
calculating blunt-nose forces is replaced here by a circular cone with
spherical base cap, since this configuration seems to command more immedi-

ate interest,
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LIST OF SYMBOLS (Partial)

A, General: Vector quantities are denoted by underlining,
except the unit vectors

i, 3, k

on the axes of a Cartesian rectangular system.

o overall angle of attack

Aot angle of attack at an elemental surface

o' its complement

n: unit vector in direction of the surface interior
normal (components, n,, np, nNx)

v: unit vector in flow direction (components O, Qo, Oz)

P> Vs 9o+ density, velocity, dynamic pressure in undisturbed

flow
Cp: local pressure coefficient
g, Tt coordinates in a surface system
ds: elemental surface
d=P: elemental force acting on dS
P: total force (components X, Y, Z)
O: origin and point of reference for force moments
r: radius vector from O to dS
M: moment integral of elemental forces
M*: moment of total force
r*: its arm
S¢: tangential shadow curve
Sot cast shadow curve

iv
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B. Elliptical Cone: Origin at tip; flow toward it.

a: length unit on x~axis (which is taken as cone axis)

o: surface coordinate, here also serving as multiplica-
tor to express abscissas x in terms of a

b, c: elliptical semi-axes at 0 = 1; b > ¢

B, C: semi-axes of cone base (where o = 0p)

€: numerical excentricity of the elliptical cross
sections

ws angle made by top meridian and cone axis (tip
angle)

q = €2 cos®w

X abscissa of centroid if placed on cone axis.

C. Coaxial Cylindrical Afterbody: Origin at cone tip (as above).

B, C semi-axes of its cross section, parallel to B and C;
B, =38, C

A= (€/B)2

o, T surface coordinates on cylinder

= ag, : cone length
*b b

total length of composite body

ke

|

I

Q
o)

h = a(oe - op): cylinder length

g = W(%): equation of cast shadow curve on cylinder

T =0: tangential shadow line on cylinder
R: cross sectional radius if cylinder is circular;
R=¢C
B = R/B




2 force acting on cylinder

ﬁﬁ its moment with respect to cone tip

g%, abscissa of cylinder centroid

xiot: centroid abscissa of composite body (cone and
afterbody)

D, Biparabolic Conoid: Origin at tip; flow toward it,

a; parabola parameter, used as unit length
w: angle made by top meridian and conoid axis (tip
angle)
ﬁ, C: "semi~axes" of biparabolic base (Figure 4)
X = 2a0§: conoid length
X3 wedge angle made by the x,y-plane and any plane

through y-axis

N (xp,/a) sin 2w

m =
(L + w®) arc tanm - m
A= 3 )
m
K =1 + (xp/B)2
B: see Elliptical Cone
X' abscissa of centroid if placed on conoid axis.

E. Circular Cone with Spherical Sections Capping Its Base: Origin
at sphere nose; flow toward it,

B, R: cone base and sphere radii
a; cone length
Xpt distance of cone base from origin

vi
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*
Xtot®

surface coordinates on sphere
surface coordinates on cone
defines tangential shadow meridian on cone

y-components of the total forces acting on spherical
cap and cone, respectively

centroid abscissa of cone alone

centroid abscissa of composite body (capped cone)

Modified Approach: o = 0°.

w:

]
CP'

local angle of attack at stagnation point
pressure coefficient at stagnation point
pressure coefficient elsewhere

Mach number in undisturbed flow

ratio of specific heats in the gas

angle between attached shock and axis of a pointed
body of revolution (shock angle)



b;;

TECHNICAL MEMORANDUM X-53391

NEWTONTIAN AERODYNAMICS FOR GENERAL BODY SHAPES
WITH SEVERAL APPLICATIONS

SUMMARY

In the hypersonic regime the Newtonian flow model, especially in
its modified form, has been known for some time to produce satisfactory
results regarding a number of basic body shapes. It may reasonably be
expected to also work well with more complicated body geometries as
presented, e.g., by re-entry vehicles. Because of its simplicity, the
components of the aerodynamic force and the location of the centroid can
be calculated without the elaborate effort otherwise required in gas
dynamics. The mathematics pertaining to the unmodified approach have
been developed here for a general surface given in analytic terms. Appli-
cations have been worked out to the elliptic cone, first without, then
with an attached rear cylinder, to a conoid of biparabolic cross sections,
and to a blunt body resembling the Apollo capsule. The modification merely
amounts to improving a constant; it has been described in the last section
where a survey of results as compared with known data is also given,

I. INTRODUCTION

The Newtonian concept substitutes for the flowing liquid an assemblage
(point mass array) of many minute inelastic particles all moving with equal
and parallel velocities., On contact with a material object such particles
transfer their momenta components normal to the surface while they retain
their tangential momenta carrying them off without further effect unless
there is a secondary impingement by the deflected stream. There is no
action on the body except by direct hits; no pressure exists on surface
elements shielded by upstream elements (contrary to later experimental
evidence). The formation of a shock, which of course was unknown in
Newton's time, is even now not contemplated in simple impact theory.

This theoretical picture of a flowing liquid and of its actions on
body surfaces had soon to be abandoned in hydrodynamics. It is also
inadequate with gas flows, both subsonic and supersonic. But in the
hypersonic regime, the expressions derived from it for the surface pres-
sure distribution and concomitant aerodynamic data yield values often
surprisingly close to those observed experimentally or obtained by more
exact theoretical means, 1In recent times Newton's method is freely used




in dealing with such flows; it offers closed-form results available in

a relatively easy manner, It has been found wanting, however, with sur-
faces concave to flow direction and in gases with exceptionally low ratio
of specific heats approaching unity (for explanation and examples, see
Reference 1, p. 125-128). Applications seem best restricted therefore to
bodies turning convex surface parts toward an onrushing gas of ordinary
description. The simple theory can often be improved upon by introducing
a correction to the local pressure coefficient based on shock transition
relations (modified method). A dependence on Mach number, absent so far,

then appears.

A hypersonic regime should prevail for some time when a space
vehicle, approaching the earth with quasi-cosmic velocity, moves in the
uppermost regions of the continuum atmosphere. One would like to pre-
dict theoretically the lift and drag the body will experience in these
regions, together with the stability behavior as depending on the loca-
tion of the center of pressure.

However, the body shapes considered in the literature are mostly of
the simple kind, such as circular cones and cylinders, spheres, diamond-
shaped wing profiles, blunted cones and capped cylinders. There appears
to be a need to systematize the method for application to more complex
structures., 1In the following, the Newtonian expressions will be derived
for an unspecified general surface which is allowed to be composite.

The stipulation is made that all its parts can be described by analytic
equations. Surface zones hit by secondary incidence are not permitted

to exist. Applications will be made to the elliptical cone (with and
without cylindrical appendage), to a conoid of biparabolic cross sections,
and to a blunt-nosed body of the Apollo capsule types.

IT, IMPACT FLOW MATHEMATICS IN GENERAL

The angle of attack, O, is commonly understood as the angle made by
the direction of the uniform flow with a line chosen within the body,
usually the body's axis if such an axis can be defined. In conventional
aerodynamics there is rarely occasion to consider other angles relative
to flow direction, since it affects the pressure distribution only
indirectly by way of boundary conditions. But in impact flow where every
elemental surface, if hit at all, is hit from a well-defined direction
bearing on the elemented force transferred, a local angle of attack must
be defined which will depend on the position of the local surface element
as indicated by its interior normal, Let the latter's direction be given

by the unit vector

n =n;i + npj + nzk (1)



where i, j and k are unit vectors on the axes of the Cartesian system in
which the body's surface is described. The unit vector, Vv, in flow direc-
tion will usually be linked to the position of the axis; its expression
will then contain certain trigonometric functions of ¢ which cannot be
obtained before a particular body-flow configuration is considered. At
this station we therefore write, in general,

v = aqi + 0z + azk. (2)

The two vectors n and y define the local plane of incidence which is
normal to the elemental surface and intersects with its tangential plane
in a straight line, t. The angle t makes with the direction vy is, in
general, considered the local angle of attack, Qjoc. More convenient to
handle, however, is its complement

o = - g 2

since a as the acute angle between flow direction and the interior
normal, 1s easily obtainable from the scalar product

3
, — . =
cos @' =n .y Z n. Q. (4)

i=1

In this way one eliminates the somewhat bothersome task of determining
the line t which, except for (j,., has little interest, whereas n gives
the direction of the local force. To be sure, the tangential momentum
of the striking particle is carried away in the direction of t, but that
momentum component is ineffective, secondary hits not being admitted.

Aside from terms small of second order, the local pressure coef-
ficient will be that of a flat plate under the angle of attack O,..
Newton's second law, if applied to normal momentum transfer, gives the
expression

C = 2 Sin2 a].OC (5)

*The interior normal, if defined as the axis of the elemental surface,
would give ' the meaning of local angle of attack in agreement with the
definition of the overall angles.

3



which, through relations (3) and (4) goes into

Cp, = 2(v * n)Z. (6)

p

Expression (5) is well known (Reference 2, p. 6); it uses the continuum
notion of density to describe the mass of the particles per unit volume
of the incoming flow. The elemental force, as usual, is obtained from

the coefficient Cp by multiplying it with the local surface element, dS,

and with the dynamic pressure,

oo [ee]
9, = > (7)
of the undisturbed flow which is taken as known. Thus,
d®P = 2q_(v * n)® ds n. (8)

The local force is small of second order and points into the direction n.
The determination of n and dS calls for the methods developed in the dif-
ferential geometry of surfaces. Here, lucid and symmetric formulations
emerge when the surface is given a point-wise representation

x = x(g,T)
v(o,T) ). 9

z(0,T)

~<
Il

The variables o and 1 will move within certain "matural' intervals in
order for the Cartesian triplets x, y, z to exactly embrace the surface
points, Often, o and 7 will be found by geometric reasoning which may
lead to a clearer visualization of surface features and, by the way, may
suggest several attractive ways of introducing these variables. On the

other hand, one might be quite formal about it, putting x = 0, y = T,
z = £(0,1).

Representation (9) offers the additional advantage that, on assigning
parametric values to T or to o, it defines two sets of parametric curves

on the surface

%1 = x(0,7), Y1 =y(0,7), 2;=z(1)
} (10)

y(@*, 1), 25 = z(c%,1)

%
X(O ’T): Yo

X
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which constitute a curvilinear (not necessarily orthogonal) system of
coordinates on it. The lines (10) are individualized by the choice of
7 and ¢* at which point they intersect. In general, they must be
expected to be of double curvature (spatial curves), However, they can
often be taken as meridians and cross-sectional peripheries, in which

case both sets are planar. If in doubt one may consult the determinant

X Z
1" " ! = A (11)
<" " !

where the primes denote differentiation with respect to the one quantity,
¢ or 1, which is variable in the set considered. If A = 0, that set con-
sists of plane curves, It is seen that if, e.g., the surface representa-
tion (9) depends in the second degree at most on o, the curves 1¥ = const,
will be planar. One can then use one of the planes for a two-dimensional
representation of the curve it contains and thus make the latter's shape
and course on the surface more clearly understood.

The surface functions (9) depend on both the variables ¢ and 7.
Partial derivatives with respect to them will be indicated by correspond-
ing subscripts.

Regarding first the vector n, its components follow from the set (9)

as
1
1 yG ZO 1 ZO— XO 1 ZO— yo—
= — = —_— n = ——
nl iN Y"[ ZT 3 n2 _L_N ZT XT b] 3 iN X"f ZT
where > (12)
2 T 2 2
yO ZO- ZO— Xg Xg Yo
N = + + .
yT ZT ZT XT X Yt
J




The sign appropriate to the interior normal can be fixed without difficulty
once the functions (9) are known for a particular surface.

Secondly, the elemental surface is given by
dS = N do d7 (13)
where do, d1 should be introduced as positive increments (the later inte-

grations must be performed over intervals in which ¢ and 7 increase).

The second order force differential (9) may now be written as

dZE 2qoo(nlOél + n2a2 + n3O£3)2 N(inl + jn2 + kn3)

(14)
i d°X + j d%Y + k d®z

ff

where the components X, Y, Z of the total force P are often called the
"chordwise," "lateral," '"normal" forces, respectively. These terms
imply that the chord is taken as the x-axis and that v has no component
in y-direction (rather than z-direction). They must be exchanged with
different correlations,and may even lose meaning altogether with highly
irregular bodies., But in any case the determination of P is reduced to
a double quadrature which can always be carried out either analytically,
or, failing that, numerically.

In addition to the resulting force P there will be a resulting
moment of the elemental forces:

m

M = [x % d%P] (5)
u= |/

W
where

r = ix(o,t) + jy(o,t) + kz(o,7)

is the lever arm from the origin (serving as the reference point) to the
elemental surface, dS(c,7) where dzg is attacking,



From the condition that M should be equal to the moment of the
resulting force,

Mn = [£7'c' X g]’ (16)
the arm
* = ix* + jy* + kz”

of the resulting force can be calculated. However, there are infinitely
many of such arms, since a force may be moved along its line of attack
without changing either the translatory or the rotatory effect, Mathe-
matically, one of the E%-components remains indeterminate., An additional
condition

£(xF, ¥v¥, 2¥) =0 a7)

may be arbitrarily set up which in symmetrical configurations usually
follows from the desire to have the point of E% (the centroid) on the
body axis.

Integration Limits

While the foregoing formulas are perfectly general and directly
applicable to any analytic surface (or surface part), the determination
and proper treatment of shielded areas often require painstaking detail
work, especially if there are several such areas (which may or may not
overlap). The problem remains simple when the "shadow" is a single
point or an open line (enclosed area zero), because then the reduction
in force is a zero quantity, and the natural o- and t-intervals can still
be used when integrating.

Two types of shielded zones can be distinguished: those created by
the bulk of the body as it opposes itself to the stream (tangential shadow
curve), and those caused by the shadow cylinders through this curve and
through sharp rims or edges that may exist on the surface (cast shadow).

With the first type, the grazing flow vector will reside in a plane

tangential to the surface and thus be perpendicular to the interior normal
at the point of contact. It then has to satisfy the condition

v+n=o, (18)



This relationship of ¢ and 7, if written as 7 = ¢(0) and introduced into
the function (9), defines the points of the tangential shadow curve, sg,
in terms of o.

The natural limits of the o- and t-intervals, if traced in a (0,7)-
diagram delineate a usually rectangular image of the surface, The curve
7 = (o) cuts off impact-free portions from this rectangle which must be
excluded in integrating the force and moment differentials and thus changes
the integration limits, Sometimes equation (18) will have the simple solu-
tions ¢ = const. and/or T = const., so that the integration area remains
a narrowed-down rectangle. In the more complex cases involving a curved
shadow boundary the integration will often have to be carried out numeri-

cally.

The root line of a shadow cylinder, as any spatial curve, can be
described through the variation of a single variable, &:

~

X, = £,(8), Vo = £2(8), z, = £5(E5.

Care should be taken to determine the interval in which & may move in
order to account for that length of the line that is exposed to the
particle stream. If the curve is part of the surface (9), as with the
rim of truncated bodies, the variable ¢ can be identified with either ¢
or © (fin edges, e.g., would not usually permit this).

The straight lines

c _ c _ C (19)

in flow direction define the curved surface of the shadow cylinder; their
intersections with other portions of the body surface, if they exist,
form an additional shadow boundary, s, which, in handling the integra-
tion limits, must be considered together with any shadow boundary, s.,
consequent to tangential incidence and determined by equation (18), An
example of this is found in Section IV,
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I1I, THE ELLIPTICAL CONE IN SIMPLE IMPACT FLOW

With the tip of the cone at the origin and its axis coinciding with
the x-axis (Figure 1), its equation can be written as

(20)

St
+

?J%J
|

%Jﬁ)

implying that the cross section at any station x = const., is always an
ellipse with axis ratio b/c. The lengths of the half axes at the base

are denoted by B and C. Surface points with x < 0 will not be considered.

—— N

_>y

Figure 1. The Elliptical Cone



One verifies easily that the coordinate triplets connected by equa-
tions (20) can be represented as

X = ac
y =bo cos T ). (21)
z = co sin 7T

The variable ¢ here is a pure number that counts the distance x from the
origin in terms of the unit a. If 0 = o, identifies the distance of the
base (xp = acp being the cone length), the variable ¢ will range in

o
1A
Q
1A
Q

which is its natural interval. The parametric lines ¢ = o* (second
family is the set (10)) are cut out by planes parallel to the (y,z)-
plane; they are the cross sectional ellipses of the cone. Condition (11)
for planar curves is satisfied, since the differential quotients of x
with respect to 1 are all zero.

The surface lines v = 7° (first family) are also planar (x, y, z
depend linearly on o). They pass through the origin, since ¢ can become

zero, Their planes
. . %
cy sin 7" = bz cos 17, (22a)

being parallel to the x-axis, therefore intersect on it. Any one of these
meridional planes defines two generating lines, members of the first family,
If it makes the angle, p, with the (x, y)-plane (Figure 1), it can also be
described by the equation

z =y tan p. (22b)
It follows that

b tan p = ¢ tan T (23)

where T has been written for ¥, since 7" can be any of the angles 7.

10
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To clarify the meaning of 7 geometrically, comnsider Figure 2, which
uses the cross sectional area at the distance o = 1. The plane (22b)
intersects with the elliptical circumference at point R. The point R
is on a circle of radius b concentric with the ellipse and has the
y-coordinate in common with R(¥ = y). To show that the angle 71, as
indicated in Figure 2, bears the relationship (23) with p we note that
the condition ¥ = y, if introduced into the equations of the circle and
the ellipse, requires that

N?
o
il
N
[e]

But Z = b sin T, so that z ¢ sin 17, Furthermore, y =y = b cos T.

o~

0

Figure 2., Relationship of 7 and p

11



Finally,

c
= tan p = g tan T,

~< N

which is the relation (23).

The meaning of the angle T now being seen, its range when R moves
round the full elliptical circumference may be given as

(24a)

I
A
A
9
1IA
a
.

If for simplicity we assume that the flow is parallel to the (z, x)-plane,

y =1 cos &+ k sin «Q, (25)

the incidence will be from below and behind as long as 0 = 17 = n/2. The
right half only of the cone needs to be considered in that case, provided
that the chordwise and normal components are doubled (the lateral com-
ponents cancel, Y = 0). The 7-interval is then narrowed down to

(24b)

]
(N
A
=
I
N

The components of the interior normals are found from the general
expressions (10) as applied to the surface (21):

_ beo _ acg cos T _ abg sin 1
nl_N: Np = = N ] Nz = = N

) (26)

7
N = + g b2 + c2a? cos®t + a®b?2 sin®t

The signs have been chosen such that the x-component is always positive,
as it evidently must be (Figure 1).

12



The shadow of the cone's base rim does not strike the surface and
may be disregarded. But a tangential shadow boundary may exist. Con-
dition (18) can be put into the form

sin 7_ =
t

(0 [}

cotg . (27)

Since the right side is constant, the shadow line will coincide with the
generatrix v = 7. Now by Figure 1,

Z
tan w = — =
X

il Iel

=
I
(S B

Consequently, there is no real solution for 7. if & < w; no shadow
develops, and the cone is impinged on in its entirety. The 7-integra-
tion will have to extend over the natural interval (24b). However,
when & > w, this region shrinks to

1
noja
A
=
A
=

with 7 —» /2 if @ - w. The part of the upper surface half lying between

the generatrices T = 74 and 7 = n/2 is then shielded from the flow; it
grows larger with increasing values of & and comprises the entire top of
the right half-cone if o = 90° (Tt = 0).

The og-interval is evidently not affected by the presence of the
shadow line s¢.

In writing down the expressions for the two non-zero force components

it is convenient to use the abbreviation

where

- C

52 (b > c)

M
I

13



is the common numerical eccentricity of the ellipses, It then follows
from the expressions (14), (25), (26) that

(sin w cos O - cos w sin & sin T)Z

2 = e
d=x 4q°° beo do 1 - q cos®t dt
[ . - . . 2
d%z = -4qm abo do S0 W COS ? _ :Oiro:’;rm' @ sin 1) sin 7 dT,

1A
A

On integrating over the intervals 0 = ¢ = o}, and -x/2 £ T, the force

coefficients, if referred to the base area

x be ¢ = #BC,

b
are found as
. 2 1+\/Ecos T
C =_2_51n205{£+T +\/'Etgwcotg051n t + p
X = € 2 t
l-\/?cos T
1 - . tan Tt
+__<]___ tgzw cotgzcx-——q'> <§+arc tan ———-———>}
1-4q 1 V1 -q
>. (28)
l+~]?cos T
=) -
CZ =z—§-%g——{cos Te +\]Jz-T <tg2w cotgZa - u) iIn L4
Te tan o 4 1 -\/;cos Te
x i tan Tt
+2tgwcotga[-2'+"rt-\/1-q<E+arctan———>:l}' J

l1-g¢

14
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The principal value (in <b%, % >) of the arc tan-function must be taken

here., The numerical value of 7, follows from relation (27). Expressions
(28) need be used only with « > w., They simplify considerably when there
is no tangential shadow zone on the surface (O = w; Ty = 11/2) and can then
be set into the form

\
- _ 2 . 2
Cy = 2 {}——Jil——-ﬂ sin®x cosZw + EQE—QLEEE—%}
q f 1-gq
? o s w. (29)
CZ = 2 sin 2 cos®w l—:—al—:—&

J

The known formulas for the circular cone (Reference 2, p. 80-84) are
obtained from expressions (28) and (29) by letting q approach zero.

On account of the symmetrical configuration, the total force
P = iX + kZ is in the (z,x)-plane and can be split there in two com-
ponents, one in the direction of incidence (drag), the other perpendicular
to it (lift), the coefficients becoming

C C.,. cos O + CZ sin ¢

D X
y (30)

- si + C
L Cx in ¢ 7 cos &

C

There is no lift with o = 0,

By somewhat laborious integrations it can be shown that the moment
(15), needed for the determination of the centroid, has neither an i-
nor a k-component., From the symmetry of the flow-body configuration, one
would indeed expect that the moment should seek to turn the body about
an y-axis parallel., It attains the form

_ & : 2 2y 2
M= 3 9, J b(a< + c%) ob F(Tt)

15



where the integral

T

t
F = (sin w cos O - cos w sin @ sin T)Z d
1-QCO?2T sIn 1T T
=1
T2

also appears in the Z-component of the total force which may be written
as

Z = ~2q ab UE F(Tt).

The moment (16) of the total force emerges as

i i ok
M% = [x* * zF| = y*(iZ - kX) - j(x*Z - z¥X).
X 0 Z

.
Requiring Mﬂ = M one sees that y* must be zero. This is understandable,
since the force P is in the (z,x)-plane, its arm 5* (relative to Q) must
have the same property. Moreover, if we let the force attack at a point
of the body- (x-)-axis, the arm will be part of the latter

7% = 0.

This is the form taken here by the condition (17). The equality of
moments then leads to

M| 2
«_ 12 _ 2 2.2 D (31)
] 3 adb a+ a ) = 3 cosw

16



The location of the centroid depends only on the length, x},, of the cone
and on the half-angle w. With these parameters preserved, it does not
vary if the angle of attack or the elliptical shape, or both, are changed.
The formula is known for circular cones, but often derived employing the
normal forces alone®™ and then does not contain the denominator coszw,
which indeed is negligible for small values of w, Yet it will be noted
that,with a 35-degree cone, the centroid is already close to the base

and moves out of the body if w is increased further. Since the mass

3
center is at % %b> slender cones are not stable. Stability begins at

w =~ 20 degrees.

The restriction to the symmetric case maintained so far is tantamount
in real flight to permitting pitch angles only, TIf it is desired to con-
sider yawed and rolled positions as well, one may use the same body-fixed
(x,y,2)-system as before. The unit vector, y, of incidence, however, will
have the general form (2) where the direction cosines ¢ are determined by
the instantaneous flight direction. The simple shadow boundary condition
(27) will be replaced by

and the discussion of integration limits will become less straightforward;
both lower and upper boundaries of T might be affected, The integrations
can still be carried out analytically, as the force differential assumes
the form

é%} + %? cos T - %? sin 1)° i j cos T k sin 7T
d2P = 2abcq - S —— <— - L - > dt odo.
- o > ) a b c
1 +cos”1T 4 sin”T
aZ b= c<

Closed expressions for the force components can be obtained from a table
of indeterminate integrals. The Y-component is no longer identically
zero, and the full range (24a) for T must be retained when seeking out
the integration limits.

*See Ref. 2, p. 84. Mr. E. Linsley seems to have been among the first to
insist that the chordwise forces can make a significant contribution
to the moment M of a circular cone.
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IV, CYLINDRICAL AFTERBODY ATTACHED TO ELLIPTICAL CONE

The surface (21) becomes composite if, e.g., a coaxial elliptical
cylinder is attached to the cone base, Let its cross-sectional semi=-
axes, B and C, be parallel to, but neither larger than nor necessarily
proportional to B and C (Section III, Fig. 1). With larger-base or
rotated cylinders, the description complicates without calling for
materially differing concepts.

Since the cone and cylinder axes coincide, the same length variable,
o, and the same angle p may be used for both surfaces. But, excepting
the case where B : C = B ;: C, the variable T must be replaced by a vari-
able 7 which will be connected with p by the equation

B tan p = C tan T

analogous to the elliptic relation (23). The points on the cylindrical
surface

may be represented in the form

X = ac
y = B cos T ). ] (32)
z=0Csin T

The same two sets of planes as were used with the cone determine the
- . ~ o, Lo -
parametric lines 7 = 7% and 0 = o* on the cylinder.

The variable ¢ ranges in the interval

A
1A

g g

Ob c

if ao, is the total length of the composite body. That of the cylinder
alone will be

h = a(oC - cb) = X, T X
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If again the symmetrical flow vector (25) prevails, it suffices to
study the right half of the cylinder. The natural interval in which the
variable 7 moves then reduces to

1
ISTE
A
R
IIA
M

Both of the intervals will be curtailed by shadow boundaries (except with
o = n/2, when that of o remains intact). Before establishing the inte-
gration limits, the force differential will be set up.

From the general expressions (12), the interior normals are found as

where

N =a 'j§2 sin®7 + &% cos®7T |.

On the right half of the cylinder, the component n, always points into
the negative y-direction (ns < 0).

It follows that

ven=- sin T sin a. (33)

fei]
2

As with the cone, the lateral forces cancel (? = 0). The chordwise
forces are also zero since the elemental forces are all perpendicular to
the x-axis; indeed, n; = 0. Expression (l4) reduces to

sin® T

42z = - 4q_a B% sin®o do a1 (34)

B2 sin®T + &2 cos37
where the right side has been doubled to compensate for the use planned

of only 1/2 the T-integration interval. The cylinder is affected by the
normal forces only.
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The tangential shadow line on the cylinder obviously is the genera-
trix T = 0 (as can also be seen from the tangential condition v - n =0
which here requires Ty = 0). The integration interval for 7 therefore is,

at most

IA

T = 0;

1A

- =
2

it will be even narrower than that when the cast shadow reaches out beyond
the cylinder length.

Shielding through the cone's tangential shadow cylinder does not
occur as one infers from inspection. The somewhat lengthy analytic proof
is omitted here. However, if B < B, or € < C, the cone's base rim will
cause an edge shadow curve to appear on the cylinder's lower surface,
cutting off it an unimpinged zone,

The coordinates of points on the elliptic rim line may be written as

T %

B cos T \. (35)

g
I

C sin 7

N
]

The flow vectors passing through the upper points of the base periphery
miss the cylinder, and, except when B = B, even the shadow cast by an
outer segment of the lower periphery will not strike it. For integration
purposes the variable 7 thus will move in

1

N A
1A
=)
A
H

max

where the value of 7., is zero or negative, It is associated with the
particular generatrix of the shadow cylinder that is tangent to the
material cylinder; i.e., that touches it somewhere along the line T = O,

The shadow generatrices (19) here have the form

X = X z = Z
r

y = Ir cos o0 sina °
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If the cylinder triplets (32) and the rim triplets (35) are introduced,
these relations go into

B cos T=Bcos T
-~ -~ }' (36)
x - xb) sin @ = (C sin T -~ C sin T) cos &

where the pairs xp, T and x, T, respectively, identify a point of
departure on the (lower) cone base line and the corresponding point
of arrival at the cylinder surface.

Since Tyax is associated with T = 0, the first of the relations
(36) gives

(37)

cOos T =
max

=<1 [><}}

which equation, as shown above, must be solved by a negative value
(except with B = B where Tpgx = 0). The x-coordinate, x; = aci, of
the point of contact along the line T = O can be obtained from the
second equation (36):

- sin = - C sin cos C,
(1 - %) @ Tmax
The right side here is not negative, so that x; Z xj, as one expects,

The cast shadow line on the lower portion of the cylinder thus
begins at T = 0, ¢ = 0, and continues toward the nethermost generatrix,

T = - n/2, which value, by the first relation (36), corresponds to
T = - n/2. Thus, the abscisa, xo = avp, of the line's low point is
given by

(xo - xb) sin a = (C - C) cos Q.

The right side again is not negative (since we assume that € = ¢), and
therefore x5 2 Xp.
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1f either one of the differences (x; = xb), (x2 - xp) is larger
than the cylinder length h = x. - xp, either T = 0 or ¥ = ~ n/2
cannot be reached by the cast shadow boundary on the cylinder, and
the interval - n/2 = T = 0 must be curtajled accordingly. This can
be decided with the aid of the system (36) which in fact is the equa-
tion of the shadow curve s¢ in terms of the parameter 7. One will
have to determine at what value (or values) of T the line s, leaves
the cylinder surface. If it does so, the curve s; {(shown in Figure 3)
would intersect with the line ¢ = 0., thus extending the cast shadow
region and removing a certain domain of negative T-values from the

integration interval.

For simplicity we assume that this is not the case, i.e., that the
cylinder is long enough to have an underside area near its rear end
fully "illuminated." Regarding the integration over ¢, the upper limit
will then be the natural limit ¢ = 0., The lower limit, however, will
vary according to the variation of 0 along the curve s, whose equation,
by eliminating T from the set (36), can be put into the form

€ sin T+CNL - (8/B)2 cosz?] cotg O = W(?). (38)

o |

g =g, -+
b L

The values of ¢ at the interval terminals, T =0 and T = - %/2, are apt
to be in any ratio depending on the axis ratios B/B and €/C. As one
would also expect, there is an extremum at T = - n/2, either a maximum
or a minimum. If (B/B)Z z (€/C), a second extremum (a minimum) may
exist, Figure 3 is a schematical sketch of the geometry involved,
drawn up in the (%¥,c)-plane. Half of the natural T-interval must be
excluded on account of the tangential shadow line, s¢, while in the
rest area the natural o-interval is trimmed down by the cast shadow

boundary, Sc.

The integration with regard to ¢ proceeds from ¢ = ¥(T) to o = O
(increasing values). The second-order differential (34) then yields

the first-order differential

) SN

o ~ sin°>% ~ ~

dZ = - 4q_ a B° sin®q — o, - ¥(T)] d7.
B2 sin®% + €% cos®%

The quadrature in - n/2 < T < 0 will be carried out for two types
of cylinders where it is relatively easy.
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Figure 3. Shadow Geometry on Attached Cylinder (Schematic)

A. The cylinders touch the major axis terminals of the cone base
B = *B). The curve sc descends here from the maximum 0> to a minimum
G, at 7 = 0, The functions Y (7) and Z take the form

1];(':) =0, + —(C - C) sin T cotg &

h <1_l A g L+l -2

7 = 4q_ B sin®Q l:

L= 2Ji a1 -41-
(39)
T ~ 2~/7\+l }
- = (C ~C) ———— cotg &
4 &A+ 1)2
23



where

3 2
A={=).
<;>
It is required that
h 2 (¢ - C) cotg o
the cylinder must have sufficient length to accommodate the entire shadow
boundary s.. Otherwise, Z assumes a different form.
Two special cases stand out here:
(a) € = C: the cylinder root is flush with the cone base.
The curve s¢ reduces to ¢ = 0}, meaning that there is no
shadow cast on the cylinder. The expression (39) for Z
loses the subtractive second term in the brackets (as it
would in cross-flow, & = 90°),
(b) € = 0: the cylinder degenerates into a horizontal plate

of width 2B and length h = C cotg ®. The cast shadow
curve (36) is the ellipse

X - % N\ 2 -
(Feoms) + o= = 1.

A limiting process required as A — 0 carries expression (39) into
7 = Bq, sin®a (4h - nC cotg @) = BCq sin 20 <2 - §>.

For comparison, the Z-component for a fully impacted circular cone
(@ = w, q=0) follows from the second expression in the system (29) as

Z = nBCq_ sin 20 cos®w, (B

c),

so that the 1lift of the composite body will be noticeably larger than that
of the cone alone., The drag is less affected, although enlarged, too.
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B. The cylinders are circular, £ = 8 =R, B =2 C =z R. The quantity

is at most equal to unity, so that the square root in w(?) is real.
Expression (38) tells that

]

03,

¥(0) = o +§J1 - B2 cotg o

C -

0o = Y(-n/2) = o + cotg O .

The curve s. ascends from the minimum oo to the ordinate o3 at T=0
(which is not a maximum). The rear end of the cylinder is fully illumin-
ated if

g, Z 01,

or if the cylinder length, h = a(o; - Gb), satisfies the condition

on which we will base the force computation.

The differential dZ simplifies, since here

BZ sin®T + C% cos®T = RZ;

one obtains from it

‘3n%+<; 2\ arc sin g N1 -p° l+f>J}

~ 2
- - 4 2
zZ = 4qu sin“Q {é h + C cotg « L16 5z 5 7

. 2 3J'ER 2 2 4
~ 2 = ==& . < .& .L 6
~ 4q R sin a-{? h + C cotg « [16 C 3 + + + 0(B°) .
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The force decreases with decreasing cylinder radius and cylinder length
(which, however, must not sink below the above lower bound; otherwise,
7 would be a different expression). TIf the normal force coefficient is
referred to the longitudinal cross section, 2Rh,

with @ = 90°, which is the known value for a circular cylinder in
Newtonian cross flow (Ref. 2, p. 10).

In calculating the moment, ﬁ, of the forces d®Z one best takes
the cone tip (the origin) as the point of reference again. The integra
tion over 0 of expression (15) extends from ¢ = y(T) to 0 = O.* One

finds that

sin37

dr.

0
M = 2j q a®B2 sin’q f [02 - ¥v3(D)]
- 00 o] 8 . D~ ~ o~
sin“T + C cos“7T

-5t/2

The remaining integrand is elliptic except in the case A (B = B) where the

square root in the expression for | vanishes, Taking this case for
illustration,

I (2 - 38%) - 2(1 - g2)3/2 > P - 582 (1 -8&H% 1 +¢
Ty % A &= AT T 288 BT
where
= 2 _ a2
A= ¢ cotg , € = —E—E——g— .
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Since the minor cylinder semi-axis, 6, is always smaller than the major
semi-axis, B, the numerical eccentricity, &€, of the cylinder cross-
section can never become zero. The largest value that C may attain is
€ = C when the cylinder and cone bases are congruent (€ = €) and M
assumes the much shorter form -

- co € 2e 1 €

. B sin®y 1 - €2 1 + ¢
M= -2 q —=—= (xi-xﬁ)( - 1n >,
N

1=

which we will use in the following. The condition M = ﬁ? then gives

X +
gt o c b

> (40)

Thus, the centroid of the cylinder is at its midpoint, as one should
expect, since a cast shadow does no longer exist,

The cylinder and cone moments both refer to the origin and can be
vectorially added to obtain the total moment. The centroid of the total
force can then be shown to have the abscissa

. X7+ &7
Xtot -
zZ+ Z

when sought out on the body axis, If, again for simplicity, we assume
the cone as fully illuminated (@ = w), then from expressions (29), (31),
(39) and (40)

2 2

21 1 =Nl-q X % . <' 1 - €2 1 + ¢
. 3 be cosba “cosZu + > sin ¢ y - 2c 1n 1 - <

xtot -

1 - e= 1+ ¢
2€ 1l - ¢

1t Ccos & (1 =~N1 - q) + (xC - xb) sin & &l - 1n
where the abbreviations

q = ¢€® cos®w and A= (C/B)Z =1 - €%

have been used., The angle & can become 0°, but not 90°, 1In the first
case xﬁot = x* (cone centroid), since the cylinder, though flush with

the cone, is not impinged at all. With very long cylinders, xﬁot - &,
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If the cross sections are circular (¢ — 0),

2 _ .2y gi
, T Cx, cos O f (= _) in o
%ot 73 —1 . :
1t C cos O cos“w + 3 (xc- xb) sin

Here, C is the common radius of the cylinder root and cone base.

V. THE BIPARABOLIC CONOID

With an elliptical cone the expressions (28) for the force com-
ponents (& > w) are léngthy. More concise formulations can be presum-
ably achieved in the same flow if, in the (x,y)-plane, a sharp edge
exists on the surface, preventing the formation of a tangential shadow
line. For example, a body may be constructed whose cross sections
parallel to the plane x = 0 (Figure 1) are bounded by two symmetric
parabolic arcs facing each other and intersecting in the ground plane
z = 0, Consider the two parabolas (parameter a > 0)

y2 = 2a(zg + 2)

in the plane x = x5 > 0, with the upper (lower) sign applying in the
upper (lower) half-plane. The two finite arcs emerging with the restric-

tion 0 = |z| = z, enclose the area

Wi

Z, N2a zg,

since z = 0, y = *~N2a z, are their common points, and 2z, is their
height. Writing now

y2 = 2a (x tan w + z) (41)

we obtain a body whose cross-sectional areas are biparabolic and taper
off toward zero if x — 0; there is a tip at the origin, The body roughly
resembles the elliptical cone illustrated in Figure 1, with which it will
be compared, The plane y = 0 intersects with it in the straight lines

x tan w+ 2z =0
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which have the slope tan w and, incidentally, are the only straight

lines on the surface., The planform (in the plane z = 0) is the rim
parabola

y2 = 2ax tan w; (42)

it is not a triangle as with the cone. The tip angle, w, the body length,

Xp, and the parabola parameter determine the length of the "semi-axes"
(Figure 4)

¢ = X tan w, ﬁ ='\/2axb tan w

%

— Y
y2= 2a x ton w

y2= 20 {xp ton w - 2)

y2= 20 (xp tan w + 2)

Figure 4, The Biparabolic Conoid
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If B and € remain small while xp grows large, the body assumes an arrow-
like appearance, If, on the other hand, the parabola parameter (a) is
very large and w remains small, a wing-like structure emerges. The volume
of the body is

16 o &

15 B C %>

almost equal to that of an elliptical cone C% BC xb) of equal length and
equal base axes. The bigger planform is offset by the smaller cross

sections (their area ratiosare 4/3 and 8/3w, respectively).

One verifies readily that the surface (41) can be given the point-
wise representation

x = 2acg®

y = 2a07T . (43)

z =+ 2ag2(tan w - TZ)

The natural range of the variable o is

(44a)

corresponding to 0 = x £ xp. Again, from

0=+ z £ x tan w,

ct
fos)
=]
€
[\
A
[\
o

and thus,

-~Ntan w £ T ENtan w . (44b)’

The negative values of T cause y to be negative, while the parenthesis in
the expression for z is always positive (or zero).
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Both sets of the parametric curves (10) are planar, since the
coordinates (43) depend in the second degree only on 0 and t. The curves
¢ = 0% (second family) are the biparabolic arcs. The curves 7 = 7% con-
tain the origin (with ¢ = 0) and are therefore in the planes

2
z =% (tan w - 7 )x, y = 2act*(arbitrary)

through the y-axis. The angle, X, they make with the (x,y)-plane is
given by

22
tan X = = (tan w - 1% ),

which relation, since 7* may be any one value within the range (44b) imparts
a geometric meaning to the variable 7.

For finding the shape of the curves t* = const,, consider one of the
planes, fixed by, say, a positive value of X (upper sign). The rotation

x = & cos X - £ sin X
y=n
z =& sin X + f cos X

carries this plane into the plane { = 0, By the system (43), the curve
7 in it is described by

£ cos X 2ac

k!

<.
B

n 2ac7T

elimination of o gives

e = 2a7%° £ cos X = 2a(tan w - tan X) & cos X,
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The first family therefore consists of parabolas cut out of the conoid by
planes through the y-axis. The planform (42) is one of them, correspond-
ing to X= 0, or to 7 = tan w. It will be observed that,quite generally,
the right parabola branch (y > 0) is associated with a positive value of
7%, the left one with the oppositely equal negative value. Moreover, the
same two values appear with two parabolas, one on the upper half (X > 0)
of the body, the other on the lower half (X < 0). The force components
must be set up separately for the two halves (the body is composite, in

fact),

The straight ridge lines are characterized by X = * w, or T = 0,
The parabolas grow more slender if X approaches *w and finally degenerate
into a straight line. At the same time ]T*[ becomes smaller and is =zero

at the end.

From relations (12) the interior normals are found as

sin w _ 207 cos W

n, —— n, = - —,
J1 o+ (207 cos w)=®

V1 o+ (207 cos w)?Z

- cos W
n3=+
N1 + (207 cos w)?@
while
2 2
N = 8a g N1 + (207 cos w)Z.
cos W

The upper sign refers to the body part in the upper half space.

If the flow vector, as with the cone, is given by expression (25)
(the particles arriving from below and behind parallel to the (z,x)-
plane), equation (18) assumes the form

sin (w + @) = 0.
There can be no tangential shadow line on the lower part of the body (as
is evident from inspection). On the upper part, a shadow line s, exists

with @ = w only; it coincides with the upper ridge-line, encloses no
area and does not affect the forces (CP = 0 along it).
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The shadow cylinder through the rim parabola (42) is found to have
the rim points only in common with the body so that a cast shadow curve,
in the proper sense,does not exist either. However, the rim evidently
will act as shadow boundary in certain circumstances., To discuss these,
we consider a particle path piercing the ground plane z = 0 on or outside
the rim parabola. It intersects with the upper surface, i.e., the moving
particle will strike it, if

tan w cotg @ = 1.

The proof, omitted here, starts out with a point on the upper surface and
follows the path backward toward its intersection with the ground plane.
The choice of the point is completely arbitrary so that we can say: as
long as & = w, the entire upper surface will be impinged upon; with ¢ > w

none of it will. 1Instead of the O-dependent shadow line 7. (cone formula
(27)), we have here the fixed boundary

T=iJmnw

with ¢ > w. The force expressions will be simpler accordingly. Applica-
tion of formula (14) gives

16q_ a® sin®(w + o) o2
=) _ . . - . n
d®P = p— 1 T 4022 coaa (i sin w - 2joT cos w + k cos w)dodt

where the upper sign refers to the elemental forces attacking the body's
upper half. On integrating over the t=-interval

~/tan w £ T SNtan w
the j-component is found to vanish (dY = 0) leaving us with

16q_ a2 sin?(w + Q) -
dp = - P o arc tan (GJZ sin w) (i sin w + k cos w) do.
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Further integration over the natural range O = 0 = o results in

=4 -
X = 2q_ a® Eiﬂ—iﬂgtizl [(L + »®) arc tan m - m]

COosS™ W

N
n

¥ X cotg w

m = Ob N2 sin 2w = / z? sin 2w .,

With the use of this abbreviation, the conoid's base area, to which the
force component will be referred, may be written as

where

% a®(m/cos w)°>.

Take at first o > w (lower signs apply alone). Then, by the system (30),

_ 3, sin®(w + @)
CD ) A sin w
a>w
_ 3, sin®(w+ @) cos (w+ @)
C. =<7 A .
L 2 sin w

where

(1 +wm®) arc tanm - m
= 3

A
m

These expressions are considerably more compact than the corresponding
cone formulas arising with the systems (28) and (30). It is seen that
with a sufficiently large angle of attack (w + Q > 90°) the lift coef-
ficient is negative indicating that the aerodynamic force then seeks to
drive the body beneath the instantaneous flight direction.
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With o = w, the upper part of the body is impinged upon also, and
the force components involving the upper signs must be added to the lower
part components:

2 2

C. = 3A cos o [sin®w cos®x + 3 cos®w sinZa]

D

C; = 3A sin [cos2w (cos®c - sin®a) + cos®a (cos®w - sinZw)

The lift coefficient here is positive up to at least w = 45°, with & —» 0°
up to w = 54°, The corresponding figures for the elliptical cones are
w = 36°23' and w = 41°49', respectively.

With @ = w both sets of expressions give

= W,

Cp 12A sin®w cos3w ;}
04

C 3A cos w sin 2w cos 2

L

The force coefficients thus remain continuous if the upper surface passes
from full illumination (@ < w) into full darkness (& > w). 1Indeed, with
& = w, Xypper = 0, Zupper = 0, meaning that the flow vector, v, is then
tangential to the upper surface everywhere.

One may compare the force coefficients to those of an equivalent
cone having the same base area, the same length, and the same tip angle, w,
In these circumstances the cone base major semi-axis, B, is smaller than

B (Figure 4); B = g% B, while C = C. As a consequence, the volume of the

conoid is by 20 percent larger than that of the equivalent cone.
Using the formulas (29) one finds that the cone's lift decreases

with its length, xp; it remains non-negative even with x, — 0, if

2 - 3 sin w

tan®q = s .
1l -« sin w

(This must be satisfied in addition to tan O = tan w,)

35



If Ry, and Rp denote the lift and drag ratios, respectively, of the
conoid and cone, one can, for small angles of attack, derive the expres-
sions

~'§'AK (2 cos®w - sin®w) (1 + K sin w)
R, 72 K(2 cosw ~ sin®w) ~ sin w

3 .
RD ~3 AKX sin w

where

K =~1 + (xp/B)2.

Use has been made here of the relations
q = cos®w - (3n/16)2 mZ® = 1 - K® sin®w

which follow from the equivalence as stipulated above,

As long as the ratio Ry is positive, it increases with w, ranging
from R, 1 (when w = 0) to Ry, = » (when the cone lift is zero).

The drag ratio increases from Rp =~ 0 (at w = 0) to Rp =1 (at w = wn/2),
Thus, if o =~ 0, the conoid's lift is larger than that of the equivalent
cone; its drag is smaller, although the conoid has the larger volume,

Comparisons when (¢ is appreciable, or when @ > w, have not been made;
the formulations grow rather unwieldy then.

The location of the centroid on the conoid's axis again does not vary
with angle of attack:

x, m + % e - (@® + 1) arc tgm

* - .2
X" = g 1+ (1 2 sin“w)

WTom ¥ ¥ 1) arc tgml
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However, there is a dependency on the base shape not found with the
elliptical cone. Note that the parameter m may be written as

2

m = —;h sin w,

while the base area is

%ﬁxb tan w.,

If, on varying w at constant hody length, this area is kept constant
rather than the semi-axis B (B = B cotg w, B = const., C = x, tan w),
the body volume

16 5 2
1 B xb tan w

will also remain constant, but the general appearance will change from
wide and flat (wing-like) at w = 0 to narrow and high (rafter-like) at
large values of w., It can be shown that in these circumstances the
centroid abscissa keeps increasing with increasing values of w, just
as it does with the elliptical comne,

With two special tip angles the location of the centroid is inde-
pendent of the choice of B,

A limiting process shows that with w =0 (m 0)

3
* _ 2
X 5 *p?

which is somewhat smaller than the cone value x* = % %X,. The center of
gravity is at x = % Xp. Like the elliptical cone, the conoid is not stable

if it is wing-like, One can calculate that stability requires w > 28°,
while with the cones the tip angle must exceed = 20°, If w = 45°, x* = x .
The centroid then coincides with the center of the base. For the elliptical
cones this occurs at w = 35°, It appears that the outward movement of the
centroid with increasing tip angle is slower with the conoid than it is
with the cone.
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VI. A BLUNT BODY

The lemniscatic body reported on in Reference 3 was investigated
for three reasons: first, to test the general method with a surface of
more intricate description, second, to show that the tangential shadow
boundary, if not coinciding with a surface coordinate line, may call for
close attention as to integration limits and that some of the quadratures
required may have to be done numerically, and third, to study a body some-
what similar to the Apollo capsule.

The latter purpose is served better when we now consider a body com-
posed of a right circular cone and a spherical base cap whose radius, R,
is rather considerably larger than that of the cone base (B). The mathe-
matical formulations to follow are valid down to R = B, the cap becoming
a half-sphere. The angles | and p identified in Figure 5 determine the
coordinates of the point P on the sphere:

x = R(1l - cos p)
y = R sin py cos p

z = R sin p sin p.

= q -

Figure 5, The Blunt Body
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They stand for the variables ¢ and 7 in general theory. The parametric
curves p = p* and u = p* are the meridians and the circles of constant
latitude on the sphere, respectively. One sees easily that the condition
(11), A = 0, for planar curves is satisfied. Let p = Mp denote the lati-
tude of the cone base. The natural intervals then are

o

IIA
-

1A

Hp

Expressions (12) give

n; = cos |, n, = - sin p-cos p, Nz = - sin y sin p

If the particles arrive from the lower left,

v =1 cos o+ j sin Q,

and the condition (18) for the existence of a tangential shadow line on
the sphere assumes the form

cos Pe = cotg O cotg Mo

One sees from this that the cap will be fully illuminated if

7
o = 2 “b‘

Otherwise, the force and moment integrands will contain a term

arc cos (cotg & cotg W), equally unpleasant as the term arc cos (cotg O
cotg 30) that can never be avoided with the lemniscatic body (Reference 3).
It is likely to force a numerical procedure upon us when integrating over
p. Fortunately, the Apollo cap is very flat (R >> B) so that by, will be
a small angle, Since large angles of attack can be excluded, the tangen-
tial shadow line on the cap may be taken as non-existent. The force dif-
ferential (14) can then be integrated without difficulty, since the fixed
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natural limits apply. If the force coefficients are referred to the cone
base area, one finds that

-1 .2 .2 2 2
C 5 sin“a sinp, + (1 + cos pb) cos ¢

(@]
!

sin ¢ cos ¢ sinzub
c, = 0.

Figure 5 indicates that the unit "a" treated as arbitrary in Sec-
tions III and IV is taken here as the cone length. Since 7 = p for a
circular cone (Figure 2), its point-wise representation may be given as

= + -
X a(ob 1 o)
y = B o cos 5
z =B o sin p.

This system follows from the former system (21) by appropriate coordinate
transformations. For greater clarity, { has been written for p, although
the meaning of the angle is virtually the same as that of the angle p used
with the sphere., The variables ¢ and § range in

1

o
A
a
1A

27,

o
1A
o
A

The values 0 = 0 and ¢ = 1 identify the cone tip and the cone base,
respectively, so that, when integrating with respect to 0, one moves
from tip to base,

From expressions (12), with the use of B = a tan w,

n, = - sin w, n- = - cos § cos w, ns = - sin g cos w
N = BZ0
sin w
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Condition (18) for tangential incidence becomes

~ _ _ tan w
t tan o °

An illuminated area on the cone can exist only if the angle of attack is
at least equal to the tip angle (@ 2 w), as one would also infer from
inspection. If §; = B* is one solution of this equation, pg = 2% - o~

will be the other one.

The shadow cylinder through the base periphery can be shown to inter-
sect with the cone in a line wholly confined to the tangential shadow

area, so that the integration interval is not curtailed any farther by a
cast shadow boundary.

The force differential (14) assumes the form

. . 2
25 - _ =2 (sin w cos o+ sin O cos w cos {)
d=<p 2q B0

; (i sin w+ j cos w cos P +
sin w

+ k cos w sin p) do d4dp.

It needs to be integrated only if o z w (otherwise, the cone does not con-
tribute to the force). The ranges 0 = 0 =1 and 3 = 5 = 2n - B must be
used. The coefficients, referred to the area sBZ, may be written as

& = sin®y cosZy

1+ 2 cos®p*) (it = %) + 3 sin 5" cos
X T e

~ . 2 2 . e
C, = 2 sin i cos W [(ﬂ - p*) cos F* + 53%—9— 2 + cszﬁ*)} cotg w

C_ =o0.

The brackets here are found to be non-negative in the interval, < E, T >,
allotted to §*; the first varies from n/2 to zero, the second from“2/3 to
zero, Thus, if the cone is struck by the particle stream, it will sub-
tract from the chordwise forces and add to the normal forces of the cap
alone,
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The centroid of the cap is at x* = R (even if a tangential shadow
line should exist on it), that of the cone is at

2 a
ok - _ <
% X, * < 3 c082é> ’

as follows from expression (31) allowing for the changed orientation and
denotation (former xp = present a). Since, from Figure 5,

x = R(1L - cos pb)

the arm of the total moment will be

2 a
o = RE A+ Y _ R + a - Recos g - 3 cosZw ¥
tot Y+ ¥ Y + ¥

R, if there are no forces on the cone.
Since

2

=2

4 . o
= 37 tan ¢ cos“w sin My, >

the centroid of the Apollo configuration, where p, is a small angle and
a < R,will never stray far from the cap's center. On the other hand,

the center of gravity will be near the cone base. Since x; << R, the

configuration should exhibit strong stability in the Newtonian flow

regime,

The same can be expected of the Gemini capsule where the rear end of
the cone is replaced by a coaxial cylindrical piece. To be sure, if the
conical middle part is struck by the particles (& > w), the deflected
stream will come in contact with the cylinder surface, and the Newtonian
analysis cannot be applied with confidence., However, the presence of the
cylinder should tend to drive the center of pressure still more backward

and thus to further stability.
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VII, THE MODIFIED APPROACH

With some bodies of plane or axial symmetry and with the circular
cylinder in symmetric cross~-flow, the Newtonian results have been shown
to improve if one sees to it that the pressure coefficient assumes the
exact value at the stagnation point where it is usually (because rela-
tively easily computed for @ = 0). It may be expected that the expres-
sion thus gained will also hold good for small angles of attack., At
least one corroboration of this surmise exists in the pressure distribu-
tion around a circular cone (w = 10°, @ = 6.7°) where the modification
amounts to a 4 percent increase in values that are already satisfactory
on the whole when computed from shockless impact theory,

With the overall angle of attack zero, the angle, w, at the stagna-

tion point will be the local angle of attack so that w = g - aétag‘ The
modified formula then will be written as
2.1 (V'n)2
— ok £OS & x T T
Cp Cp sinZw Cp sinw ? (43)

where Cg is the pressure coefficient at the stagnation point., If
a' = Q%tag’ Cp = Cg as desired. The value of C¥ can be calculated from
shock transition relations and depends on the ratio of specific heats

(y) in the gas and on the Mach number, M_, of the undisturbed flow.

In the case of blunt bodies (for which expression (45) was first
suggested in Reference 4) sin w = 1 and

ta

Cl\ =
P

1 LN 41 i
rx+ 1 o\ i 7t
M2 K 2 Moo> <27 M2 - o + 1> 1_}' (46)

0

= [N

With infinite Mach number in a diatomic gas, c* = 1.84, which figure then
replaces the factor 2 of simple impact theory.” The values decrease with
decreasing Mach number (C* = 1.64 for M, = 2), at first very slowly; in
the hypersonic region M, 6 the figure 1.84 may be used throughout with
a small error in the second decimal place (y = 1.4), Very satisfactory
results have been obtained regarding the sphere, ellipsoid~ and sphere-
capped circular cylinders, and a sphere-blunted circular cone; they were
somewhat less accurate with the cylinder in cross-flow. 1In all cases,
however, they surpassed those obtained by another method (Busemann's pres-
sure relief approach).
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With plane symmetric bodies having a sharp leading edge to which
the shock is attached, one may use the zero incidence stagnation pressure
of the wedge which, although it cannot in general be written down explic-
itly, assumes a convenient form when the cosine of the shock-body angle
is sufficiently close to unity. Expression (45) then emerges as

2
oo [F () ] ewn @

1f the Mach number approaches infinity, the bracket approaches (y + 1);
the factor 2 is then replaced by 2.4 in a diatomic gas.

With y = 1.4, the formula (47) worked well and better than Busemann's
method for the wedge itself and for a symmetrical pointed airfoil profile.
With the latter and y = 1.05, however, the modified Newtonian formula gave
consistently too high pressure values and was inferior to the pressure
relief approach (which resulted in figures somewhat too small).

The surface of a pointed body of revolution may, near the tip, be
approximated by that of a circular cone with the same half opening angle
w. The latter's relation to the angle, Og>» of the attached shock is
involved. As a rule, numerical calculations are necessary, unless both
w and oy are small, In this case the approximate expression

*
4

w oy + 1

K2 - 1) + 2@ - K)Z —L I (48)
(r -1 +¢=
S

is derived in Reference 1 (p. 116-118)*, the relationship of K = M w and
Kg = M, 0g being given as

= :
K
s _xyt1 J/ y + 1 2 1

K 7y +3 + <? +3) y + 3 KE ° (49)

Much of the factual information assembled in the present section is also
taken from Chernyi's book.
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If M — oo,

o*
B G+ +7) _
0 - 2 G + 3)2 = 2,08

with ¥y = 1.4. The excess over 2 is markedly less than in two dimensions.
For the circular cone itself and y = 1,405, the approximation of Cp is
very good up to w = 20°, 30°, and 40° if K 2 2, 2 3, = «, It breaks
rapidly down for K < 2, the error amounting to -8 percent at K = 1 and

w = 5°, Expression (48) offers an equally satisfactory approximation of
the ratio og/w in terms of K; with w up to 10°, it is close even with

K =1.

A check was also made with an axisymmetric ogive (w = 16.26°, M, = 8,
7 = 1.4). The zero incidence meridional pressure distributions as com-
puted from Newton's modified formula and from the (more exact) numerical
method of characteristics were practically identical.

For bodies like the elliptical cone and the biparabolic conoid which
are not of rotational symmetry,the modification of the factor 2 must be
judged on the basis of the wedge and circular cone results, The flatter
these more irregular bodies become at a given value of w, the more one
may be inclined to cautiously upgrade the relative low cone correction.
The blunt Apollo-like configuration induces no uncertainty; the modified
pressure coefficient will here be smaller in accordance with the general
expression (46).
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